Infective endocarditis (IE) is the infection of the inner endothelial surface of the heart (including the native heart valves as well as prosthetic valves) with an incidence of 1.9-6.2/100000 [1]. IE may present as a rapidly progressive acute infection or may manifest itself as a subacute or chronic disease. Clinical signs and symptoms include fever, malaise, chills, anorexia and weight loss. A cardiac murmur is present in 85% of patients. The diagnosis is based on physical and echocardiographic examinations. Transthoracic echocardiography has a sensitivity of 40-63% while transoesophageal echocardiography has a sensitivity of 90-100% [2]. The Duke criteria which rely on the clinical, echocardiographic and microbiological findings are useful to establish a diagnosis of IE with a high sensitivity and specificity (generally about 80%) [3]. Some recent changes [4] have been made to these criteria taking into consideration Q-fever (a zoonoses occurring all over the world and caused by Coxiella burnetii), and also due to an increase in the prevalence of staphylococcal infections and the widespread use of transoesophageal echocardiography. Currently, the modified Duke criteria [5] have been used for the diagnosis.

In this article, we present an example of giant mitral valve vegetation complicated by a cerebrovascular embolism.

**Case Report**

A 66-year-old diabetic female patient was admitted to the emergency department with complaints of fever, fatigue, dizziness, and a speech disorder. She had been symptomatic for 10 days and was at first admitted to another hospital with these complaints. The patient’s general condition deteriorated despite antibiotic treatment and she was transferred to our hospital. At the emergency unit her blood
pressure was 90/65 mmHg, her pulse was 100/min and her body temperature was 38.3 °C. She had blurred consciousness. Physical examination revealed normal heart sounds with a systolic murmur of recent onset. The laboratory tests were within normal limits except for the presence of an elevated white blood cell count (24100/ mm³), as well as increases in the levels of C-reactive protein (84 mg/dL), and amino-terminal pro-B-type natriuretic peptide (8855 pg/ml). There was no history of a prosthetic valve or pacemaker implantation. Relying on the presence of the fever, the cardiac murmur, and the central nervous system signs, infective endocarditis was suspected. Three blood culture sets were obtained from different sites but all were negative.

The patient underwent an echocardiographic examination which revealed a large (2.9x4cm) hyperechoic mobile mass on the mitral valve (Figure 1). Two and three dimensional transoesophageal echocardiography better clarified the mass as a giant vegetation (3.2x4.4 cm) on the posterior leaflet of the mitral valve (Figures 2 and 3). The vegetation was causing severe mitral regurgitation.

A cranial diffusion magnetic resonance image showed an acute ischemic lesion in the left cerebellar hemisphere which was associated with embolic complication of endocarditis. With these findings, diagnosis was considered as definite IE according to the Duke criteria ([1 major (echocardiographic finding), 3 minor criteria-(fever, vascular phenomenon and serological infection marker)]. Intravenous piperacillin-tazobactam and gentamicin was initiated as antibiotic therapy because of possible sepsis. After that she was transferred to cardiovascular surgeons for early surgery. However, on hemodynamic deterioration she was intubated. The patient's urine output declined and, kidney and liver function tests deteriorated (BUN: 95 mg/dl, creatinine: 7.85 mg/dL, AST: 4785 U/L, ALT: 939U/L). Despite inotropic support, the blood pressure was 70/50 mmHg. The patient was lost due to multi-system organ failure.

Discussion
The prognosis of IE depends on four main factors: 1) the patient’s characteristics (age above 65, insulin-dependent diabetes mellitus, prosthetic valve endocarditis, concomitant congestive heart failure, chronic renal failure); 2) presence of endocarditis related complications (heart failure, renal failure, stroke, septic shock); 3) associated microorganisms (S. aureus, fungi, gram-negative bacilli); 4) and echocardiographic findings (periannular complications, severe mitral or aortic regurgitation, large vegetation, pulmonary hypertension, severe prosthetic dysfunction) [6]. The patients with heart failure, periannular complications or S. aureus endocarditis have the highest risk of mortality and need surgical treatment during the active phase of the disease [6]. The risk reaches to 79% when all these three factors are present in the same patient [6]. We could not calculate our patient’s risk factors.
because we did not have positive culture result. But our patient’s age, presence of heart failure, septic shock and large vegetation were negative predictive factors for prognosis of IE for our patient. In patients who need surgery urgently, the presence of resistant strains and renal failure are the major risk factors for mortality [7]. The prognosis of the patients who require surgery, but cannot be operated is extremely poor. The main indications for early surgery are heart failure, uncontrolled infection and prevention of embolic events. In-hospital mortality rates range from 9.6% to 26% [8].

Several factors play role in the prognosis of IE. Whether the echocardiographic characteristics of vegetation may predict embolic complications is under debate. While some authors have not found any association between embolic episodes and vegetation size or mobility, others point out that larger vegetations are associated with increased risk of mortality and embolisms [9,10]. Some authors suggest that the causative microorganism is associated with embolic complications rather than the size of the vegetation [11]. The presence of a perivalvular abscess or fistula are also poor prognostic risk factors [12]. Dunne et al. demonstrated that preoperative risk factors associated with mortality that occur at ages over 65 include inotropic requirements, uncontrolled sepsis and cerebral emboli [13].

Costa et al. demonstrated that summation of clinical and echocardiographic scores as the predictors of mortality included: age over 40 years (4 points), New York Heart Association (NYHA) class-IV heart failure or cardiovascular shock (5 points), uncontrolled sepsis (6 points), conduction disorder (5 points), arrhythmia (8 points), a valve with extensive damage or abscess, or a prosthesis (5 points), large and mobile vegetation (4 points) [14]. Mortality rates for scores below 10 were 5.26% and for scores over 20 were and 78.9%. According this study our patient was in a group with a mortality rate of 78.9%.

Conclusion
We have presented a case of infective endocarditis with a giant vegetation on the mitral valve complicated by a cerebrovascular embolism and multi-organ failure. This case stresses that urgent management including removal of a large vegetation must be considered because of the increased risk of mortality or a catastrophic embolism.

References